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Abstract

The solidi®cation of a dilute alloy under Bridgman crystal growth conditions in a reduced-gravity environment is
investigated. The simulation consists of fully transient calculations of the species concentration, temperature and

¯ow ®eld, as well as conduction in the ampoule. Results are obtained at gravity levels of 1, 10 and 50 mg for a Bi-
1.0 at.% Sn alloy to determine the in¯uence of gravity level on thermosolutal convection, and consequently, on the
concentration in the solid. A primary convective cell driven by thermal gradients forms in the bulk of the domain,

while a secondary convective cell driven by solutal gradients forms near the interface. The magnitude of the
velocities in the secondary cell increases with time, causing increasing solute segregation at the interface. For a
gravity level of 1 mg, convection-induced radial segregation in the solidi®ed material is minimal and the process is

di�usion-controlled. In contrast, at the highest gravity level of 50 mg, very large levels of segregation are observed
and the high levels of convective transport in the melt lead to a breakdown in the phenomena normally associated
with di�usion-controlled solidi®cation. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The compositional uniformity (and hence the qual-
ity) of crystalline materials synthesized by directional

solidi®cation can be profoundly in¯uenced by the
transport phenomena which occur in the melt, particu-
larly in the vicinity of the solid±liquid interface, during
solidi®cation. The primary transport mechanism con-

trolling crystal quality is natural convection. This con-
vection is driven by density di�erences caused by both
thermal gradients in the material and solute gradients

in the layer adjacent to the solid±liquid interface, and
so, may exhibit a complex structure. The low-gravity

environment of Space o�ers an opportunity to sup-
press the strength of this natural convection, so that
the process may become di�usion-controlled. Hence

there is a great deal of interest in the study of the
physical processes that take place during directional
solidi®cation under low-gravity conditions.

Many simulations of Bridgman crystal growth
processes, both under terrestrial and low-gravity
conditions, are available in the literature. The ma-
jority of these simulations can be classi®ed as

pseudo steady state models. The key assumption in
such models is that a ``steady state'' mode of alloy
solidi®cation exists, i.e. the concentration of the

dopant in the solid which forms at the interface is
equal to the initial dopant concentration in the
liquid [1]. Such models vary in complexity from

simple two-dimensional analyses that consider the
interface to be ¯at [2,3] to much more complex for-

International Journal of Heat and Mass Transfer 43 (2000) 1905±1923

0017-9310/00/$ - see front matter # 2000 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310(99 )00275-6

www.elsevier.com/locate/ijhmt

* Corresponding author. Tel.: +1-765-494-5621; fax: +1-

765-494-0539.

E-mail address: sureshg@ecn.purdue.edu (S.V. Garimella).



mulations that are able to handle interface curvature

and wall conduction [4] and fully three-dimensional

simulations [5].

Bridgman growth in Space has previously been

modeled by means of a transient, 2D ®nite-element

model [6]. Due to computational di�culties intro-

duced by the small partition coe�cient for the sys-

tem used (Bi±Sn) [5,6], the presence of solute was

ignored; as a result, only thermal convection was

considered and no quantitative results for solute

segregation in the solid were provided. Preliminary

scaling arguments on convection levels by de Groh

and Nelson [7] imply that solutal convection e�ects

on solute segregation may be signi®cant. However,

only recently has it become possible to include solu-

tal convection into numerical simulations involving

phase change for transient crystal growth problems.

As a consequence of the low partition coe�cient

for bismuth doped with tin, a steady-state mode of

solidi®cation is never achieved during the Bridgman

growth of this material. A solute boundary layer

forms in the melt adjacent to the interface and

grows with time. The magnitude and structure of

solutal convection is determined by this transient

solute layer. In turn, the ¯ow velocities in¯uence

the solute distribution by convective transport. Since

the solute and ¯ow ®elds are therefore coupled and

time-dependent, pseudo steady state models are not

appropriate. Instead, fully transient simulations, such

as those recently developed by Simpson et al. [8]

and Timchenko et al. [9], need to be employed to

faithfully model this process.

A key e�ect during the Bridgman growth process

that must be included in simulations is the in¯uence

of the ampoule wall. The temperature pro®le

imposed by the furnace is not realized at the inside

of the ampoule wall. Heat transfer between the

solid, melt ampoule and furnace modi®es the tem-

perature pro®le [2,4]. Longitudinal temperature gra-

dients are generally decreased as a result, while

radial temperature gradients may increase or

decrease, depending on the combination of melt and

ampoule properties. Accurate calculation of convec-

tion and the resulting solute segregation can only

be achieved if the ampoule is included.

The computational modeling presented in this paper

is intended to allow a fundamental examination of the

e�ect of gravity level on horizontal Bridgman crystal

Nomenclature

A apparent heat capacity (Eq. (3))
cp speci®c heat at constant pressure
C species concentration

D species di�usion coe�cient
E energy
f volume fraction

g mass fraction
g acceleration due to gravity
Gr Grashof number, gbT(THÿTC)H

3/n 2

Grs solutal Grashof number, gbcC0H
3/n 2

h ampoule thickness (outside radiusÿinside
radius)

h0 reference enthalpy of liquid phase, DH/r
H ampoule diameter; reference length
k thermal conductivity
kp segregation coe�cient

L length of simulation domain
LA translating zone length
Le Lewis number, a/D
Pr Prandtl number, n/a
rhsij coe�cient matrix in Eq. (11)
RHSij coe�cient matrix in Eq. (10)

t time
T temperature
u, v velocities in the x, y directions

Greek symbols
b expansion coe�cient
DT temperature di�erence, THÿTC

DH enthalpy of freezing
Gij coe�cient matrix in Eq. (10)
Lij coe�cient matrix in Eq. (11)

m dynamic viscosity
x radial segregation, (CmaxÿCmin)/Caverage

r density

Subscripts
0 initial condition
C cold furnace temperature condition

H hot furnace temperature condition
i, j located at i, jth ®nite volume center
I, J located at I, Jth ®nite di�erence mesh point

L liquid
m at solidi®cation front
S solid

w ampoule wall

Superscripts

U unit vector
0 vector
� reference quantity
n time step n
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growth experiments performed in Space. Quantitative
details of the ¯ow structure, thermal ®elds and solute

redistribution are obtained. This is achieved via a fully
transient 2D numerical model, which includes most of
the e�ects of binary alloy solidi®cation, convection

driven by both thermal and solutal gradients, distinct
thermal properties in the solid and liquid phases, and
the e�ects of interface curvature. Conduction through

the ampoule wall is considered. For the purposes of
our model, we assume that the liquid/solid interface
remains distinct like that for a pure material. This is a

valid assumption for the dilute alloy, very slow growth
rate, and imposed temperature gradients considered in
this study. It will be seen that at very low gravity levels
(1 mg), the process is di�usion-controlled, and convec-

tion-induced radial and longitudinal segregation is
slight. At a gravity level of 10 mg, the process is per-
turbed from the di�usion-controlled state and discern-

ible levels of segregation occur. As gravity is increased
further, the process breaks down and becomes convec-
tion-controlled.

2. The mathematical model

The problem under consideration is the directional

solidi®cation of a binary alloy by the Bridgman pro-
cess, as shown schematically in Fig. 1. The gravity vec-

tor is perpendicular to the furnace axis (horizontal
Bridgman growth con®guration). The melt region is
considered to be a viscous Newtonian ¯uid subject to

thermosolutal convection. Thermophysical properties
are considered as constant but distinct for the solid
and liquid phases. Density variations are considered to

be subject to the Boussinesq approximation. The gov-
erning equations for the velocity ®eld in terms of vorti-
city and vector potential equations, as well as the

boundary conditions employed, are discussed in detail
in Simpson and Garimella [10,11] and are not repeated
here. In the nondimensionalizations used, the ampoule
inside diameter H is selected to be the reference length.

The characteristic time and velocity become t� ��
H 2=a� and v� �� H=t� � a=H �:
The governing equation for the conservation of

energy (from [12]) is

A�T, C �@T
@ t
� rcpL

~r� ~uT � � ~r�k ~rT � � B�T, C � �1�

It will be seen that e�ective heat capacity A and source

term B may be speci®ed in this way for calculating
phase-change. An initial temperature equal to TH is
applied throughout the ¯ow ®eld. The temperatures at

Fig. 1. Schematic of the Bridgman crystal growth process and furnace temperature pro®le.
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the x=0 and x � L walls are set to be TH and TC, re-
spectively.

The thermal boundary conditions along y �
2�H=2� h� required for the Bridgman process are a
function of time, and are shown schematically in Fig.

1. There is a translating zone (considered an ``adia-
batic'' zone if the temperature pro®le is unknown)
between the hot and cold regions of the furnace, in

which the temperature linearly increases from the cold
furnace temperature to the hot furnace temperature.
The melting temperature of the material falls some-

where within this zone, which translates with time at a
constant x-velocity, known as the translation velocity,
ut. This is what facilitates the directional growth of the
crystal. De®ning the x location where the translating

zone meets the cold furnace temperature zone to be at
xA(t ), the boundary condition for temperature may be
expressed as

at y �2

�
H

2
� h

�
:T

�

8>>>><>>>>:
TC, for x < xA�t�

TC � DT
xÿ xA�t�

LA

, for xA�t�RxR�xA�t� � LA�
TH, for xA�t� < x

�2�

In principle, the solution of the energy Eq. (1) coupled

with the solution of the vorticity-vector potential
equations would yield the temperature and velocity dis-
tribution throughout the simulation domain. However,

the problem of modeling the physics of the propa-
gation of the solidi®cation front and determining its lo-
cation remains to be addressed. We choose to do this

by employing the phase-transformation model of Zeng
and Faghri [12]. In their model, apparent heat capacity
A and source term B are given as

A�T, C � � rcp � a�T, C �@ fL
@T

B�T, C � � ÿ ~r�rh0 ~u� � ~r�rfS�h0 � �cpL ÿ cpS�T � ~us�

ÿ a�T, C �@ fL
@C

@C

@ t

a�T, C � � r
�
�cpL ÿ cpS�T� �rL ÿ rS�cpT� rLh0

rL ÿ fL�rL ÿ rS�
�

cp � cpL fL � cpS fS

r � rSgS � rLgL �3a�

For the present study, concentration-dependence on
temperature is neglected, the density of each phase is

assumed to be equal, and there is no dispersion of
solid phase moving in the liquid. After these assump-
tions are made, the full expressions for A and B (Eq.

(3a)) simplify to become

A�T � � r�cpL fL � cpS fS� � a�T �@ fL
@T

B�T � � 0

a�T � � r��cpL ÿ cpS�T� h0� �3b�

Since source term B has become zero, this scheme may
be classi®ed as an apparent heat capacity method [6,13].

The equation for conservation of solute throughout
the computational domain is

@CL

@ t
� ~r� ~uCL� � Dr2CL � S�T, CL� �4�

This equation is analogous to the energy equation. We
impose an initial solute concentration throughout the
solution domain. At the boundaries no solute may exit

the solution domain. Thus,

t � 0 CL � C0

x � 0, L @CL=@x � 0

y � 0,H @CL=@y � 0 �5�

Again, in principle, solution of Eq. (4) along with

energy Eq. (1) and the vorticity-vector potential
equations all subject to the relevant boundary and in-
itial conditions would yield the solute, temperature and

velocity values throughout the solution domain. How-
ever, the more general problem involving phase change
demands that the thermodynamics of solute redistribu-

tion be addressed. Source term S is the mechanism by
which solute rejection into the melt region at the
advancing solid±liquid interface is accounted for. Fol-
lowing the work of Voller et al. [14] and Swaminathan

and Voller [15] term S becomes

S�T, C � � @ � fLCL�
@ t

� kpCL
@ fS
@ t

�6�

The following assumptions have been employed in the

development of Eq. (6):

1. the densities of the liquid and solid phases are con-
stant and equal;

2. there is no di�usion in the solid (except in the cells
that contain the interface, in which the equilibrium
lever rule is assumed); the concentration at which
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the solute ®rst solidi®es is the concentration at
which that portion of solid remains for all time t.

The important parameters are the partition or distri-
bution coe�cient, kp, and the slope of the liquidus
line, m. For the purposes of our model, we assume

that TL 1 TS 1 TM at the interface for all concen-
trations encountered; thus, there is no e�ect of concen-
tration on melting temperature and the liquid/solid

interface remains distinct like that for a pure material.
The signi®cant result of this assumption is that the
energy equation (Eq. (1)) is decoupled from the con-

centration equation and is the only mechanism necess-
ary to determine the location of the solidi®cation
front.

The mathematical formulation for the directional
solidi®cation of a binary alloy subject to thermosolutal
convection has now been fully speci®ed. The next step
is to formulate an appropriate solution scheme so that

results may be obtained.

3. The numerical scheme

The computational domain is primarily discretized
using regularly spaced ®nite di�erence mesh points.

Superimposed on this grid are ®nite volumes which are
used for the solution of the energy and species concen-
tration equations (Fig. 2). Vorticity, velocity and

stream function are calculated at the ®nite di�erence
mesh points. Temperature and solute concentration are
evaluated at the ®nite volume centers as a result of the
solution of Eqs. (1) and (4). The ®nite volume centers

are staggered with respect to the ®nite di�erence mesh
point locations in order to obtain the most accurate in-

terpolated values for velocity at the ®nite volume
faces.

The details of the solution scheme for the vorticity
transport and stream function equations, including the
application of boundary conditions at the arbitrarily-

oriented solid±liquid interface, are furnished in Simp-
son and Garimella [10,11] and are not repeated here.
The discretized energy equation is shown in Appen-

dix A. The key to facilitating phase-change in this for-
mulation lies in specifying the change in liquid volume
fraction with temperature. In principle, the relationship

between liquid volume fraction and temperature for a
material with a distinct melting temperature Tm is

fL �
�
0, if Ti, jRTm

1, if Ti, j > Tm
�7�

In practice, numerical algorithms are unable to handle
the point discontinuity; the relationship between liquid

fraction and temperature must be linearly smoothed at
Tm [6,13]. This results in the relations

fL �

8>>><>>>:
0, if Ti, j < �Tm ÿ e�
Tÿ Tm � e

2e
, if �Tm ÿ e�RTi, jR�Tm � e�

1, if Ti, j > �Tm � e�
�8�

and

@ fL
@T

����
i, j

�

8>>><>>>:
0, if Ti, j < �Tm ÿ e�

1

2e
, if �Tm ÿ e�RTi, jR�Tm � e�

0, if Ti, j > �Tm � e�
�9�

Fidelity of the solution scheme is ensured if tempera-
ture increment 2e is kept small. This is achieved by
selecting 2e to be equal to the temperature change that

a single cell undergoes in one time step due to the
applied transient temperature gradient. Values lower
than this result in oscillations in the solution or a low-

ering of the latent heat released at the interface, while
higher values result in the latent heat being released at
a range of locations away from the interface. The sys-
tem of equations formed from the numerical formu-

lation is advanced forward in time using Gauss±Seidel
iteration with successive over relaxation which may be
written as

�A p
i, j � G p

i, j �T p�1
i, j � RHS

p
i, j �10�

in which p denotes the inner iteration number, and the
values at time step n are used as the ®rst approxi-
mation. The RHS is fully explicit at iteration p. Iter-

ations proceed until convergence, at which time the
new values at time step (n + 1) for temperature and
enthalpy are declared to be those found at conver-

Fig. 2. Arrangement of ®nite volume centers and ®nite di�er-

ence mesh points.
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gence. Convergence is assessed in the usual manner
with a tolerance of 10ÿ6 [16,17].
The discrete form of the concentration Eq. (4) is

given in Appendix B. The solution of this equation is
attained via Gauss±Seidel iteration in a manner analo-

gous to the energy equation, i.e.,

�1� L p
ij �C p�1

L, ij � rhs
p
ij �11�

Since di�usion in the solid is negligible, the solute con-
centration in the solid portion of a node may be recov-

ered by employing the relation

C n�1
S � C n

S f nS � kpC
n
L� f n�1L ÿ f nL�

f n�1S

�12�

The solution scheme for solidi®cation in a two-dimen-
sional cavity subject to thermosolutal convection has

now been fully speci®ed.

4. Results and discussion

Simulations for the Bridgman crystal growth of a
Bi-1.0 at.% Sn alloy (0.8185 vol.% Sn) at gravity

levels of 1, 10 and 50 mg were performed (yielding
Grashof numbers of Gr = 11.36, 113.6, 568.0 and
solutal Grashof numbers of GrS=0.4262, 4.262, 21.31,
respectively). Thermophysical properties from [3] were

used. The property values are provided in Table 1. The

cold and hot furnace temperatures were TC=508C and
TH=7008C, respectively. Liquid properties were used

as the reference properties in the nondimensionaliza-
tion. The dimensions used to de®ne the domain were L
=75 mm and H=6 mm. The ampoule wall thickness,

h, was 2 mm. The length of the insulated translating
zone was LA=25 mm, with a translation velocity of
ut=3.38 mm/s.

In order to start the crystal growth simulations, the
following procedure was carried out in each simu-
lation. The initial position of the translating zone was

¯ush with the x=0 wall. This zone is immobilized for
the ®rst 3000 time steps. During this time, the velocity
and concentration ®eld solution schemes are switched
o� while solid rapidly chills in the portion of the trans-

lating zone which is lower than the melting tempera-
ture. This new state is then taken to be at time t = 0.
After this, simulations proceed with the entire solution

scheme enabled and the insulated zone moving at the
translation velocity ut.

4.1. Overview of grid independence tests

A grid independence study was undertaken to deter-

mine the appropriate spatial and temporal discretiza-
tion scheme to be used. This study involved examining
the solution ®elds from a test matrix of simulations
performed using four di�erent discretization schemes.

The thermal, solutal and velocity ®elds were examined

Table 1

Thermophysical propertiesa

Property Units Value

Reference density, r0 kg/m3 10,070

Thermal conductivity of the solid, kS W/m K 6.872

Thermal conductivity of the liquid, kL W/m K 14.66

Speci®c heat of the solid, cpS J/kg K 132.6

Speci®c heat of the liquid, cpL J/kg K 135.3

Enthalpy of freezing, DH kJ/kg 52.3

Viscosity of the liquid, m Ns/m 1.240� 10ÿ3

Melting temperature, Tm 8C 271.3

Thermal expansion coe�cient, bT Kÿ1 ÿ1.25� 10ÿ4

Thermal conductivity of the (fused silica) ampoule, kw W/m K 2.10

Density of the (fused silica) ampoule, rw kg/m3 2020

Speci®c heat of the (fused silica) ampoule, cpw J/kg K 1066.8

Partition (or segregation) coe�cient, kp ± 0.029

Di�usivity of liquid Sn in liquid Bi, D m2/s 3.50� 10ÿ9

Solutal expansion coe�cient, bC (vol.%)ÿ1 ÿ0.305
Prandtl number, Pr ± 0.01144

Lewis number, Le ± 3074

a The properties (except the solutal di�usion coe�cient D ) for solid and liquid bismuth were evaluated at the mean solid and the

mean liquid temperatures of 160.7 and 485.78C, respectively. The solutal di�usion coe�cient was evaluated at a position halfway

into a typical solute boundary layer, since solute di�usion occurs mainly in this region. The reference density was considered to be

equal for both phases.
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Fig. 3. Results from grid-independence study: (a) trace of y-velocities along y = 0; (b) radial solute concentration pro®les in the

solid at x=29 mm. Mesh 2 is seen to be adequate for the simulations.
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Fig. 4. Velocity vectors and isotherms for horizontal Bridgman growth with g=1 mg at (a) 3000 (b) 6000 and (c) 9000 s. The thick

solid line indicates the location of the solid±liquid interface. Velocity vectors are shown at every other location in the x-direction.
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after a time of t = 3000 s. In order to conserve CPU
time, the presence of the ampoule was neglected and

the length of the computational domain in the x-direc-
tion was cut down to 37.5 mm for these test runs. This
was feasible since the crystal does not become long

enough to cause the ¯ow ®eld to signi®cantly interact
with the end of the domain at t = 3000 s. The gravity
level was set at g= 10 mg. The mesh sizes investigated

were:

. mesh 1 Ð a coarse mesh, Dx=0.5 mm,
Dy=0.5 mm and Dt=0.5807 s;

. mesh 2 Ð the preferred mesh, Dx=0.25 mm,
Dy=0.24 mm and Dt=0.1338 s;

. mesh 3 Ð an x-re®ned mesh, Dx=0.125 mm,

Dy=0.24 mm and Dt=0.03630 s;
. mesh 4 Ð a y-re®ned mesh, Dx=0.25 mm,

Dy=0.12 mm and Dt=0.03345 s.

The results are brie¯y discussed here. The thermal ®eld
results were almost identical for all four schemes. A
trace of y-velocities after t = 3000 s is shown in Fig.
3(a). At this time, the maximum magnitudes of y-vel-

ocity predicted by the four meshes are 2.238, 2.265,
2.292 and 2.256 mm/s for each respective mesh. The
di�erences between the values predicted from mesh 1

and mesh 3 are less than 10% over the majority of the
domain; this di�erence reduces to less than 3% (com-
pared to mesh 3) when mesh 2 is used. These di�er-

ences are typical of those found at other times,
indicating that discrepancies are not accumulating with
time. Particular attention was paid to the concen-
tration values in the solidi®ed material. The concen-

trations in the solid are completely dependent on the
solutal, thermal and ¯ow ®elds in the melt, and thus
are very sensitive to any changes in these ®elds. Con-

centration traces across the solidi®ed material at x =
29 mm (a location just behind the interface at t =
3000 s) are shown in Fig. 3(b). As can be readily

observed from this plot, the values found using mesh 1
exhibit serious discrepancies when compared to the
®ner meshes, while those obtained using mesh 2 are

close to those found using the ®ner meshes 3 and 4. A
plot of the percentage di�erence between the results
found using meshes 2 and 3 is also superimposed on
Fig. 3(b). The maximum discrepancy is only 3.2%,

while the majority of the values are smaller than 1%.
Analysis of these results makes it clear that the algor-
ithm will converge to an exact solution, and that mesh

2 is ®ne enough to obtain meaningful results.

4.2. g=1 mg

Velocity vectors and isotherms after 3000, 6000 and

9000 s for this gravity level are shown in Fig. 4. Iso-
therms are shown in the ampoule wall as well as in the
liquid and solid regions. The velocity vectors in Fig.

4(a) indicate a primary convective cell rotating in a

counter-clockwise manner in the translating zone,
along with a weak secondary, clockwise convective cell
driven by solute gradients adjacent to the interface (the

thick line at x 1 16 mm represents the solid±liquid
interface). This two-cell convective motion is in con-
trast to the single-cell convective motions observed for

pure materials and more dilute alloys [18]. For clarity,
velocity vectors are plotted on every second mesh

point in the x-direction in this ®gure. Solute rejection
at the interface leading to the formation of a solute
boundary layer adjacent to the interface is responsible

for the formation of the secondary cell.
The other main feature of this plot is the isotherms

throughout the solution domain. On the outside edge
of the ampoule, the (imposed) temperature pro®le is a
linear ramp function within the translating zone, as

witnessed by the regularly spaced isotherms on the
outer edge. In the ampoule region, the isotherms are
dramatically distorted. Since the ampoule material

(fused silica) has a low thermal conductivity, the ther-
mal ®eld on the inside of the ampoule wall di�ers from

that imposed on the outside. The isotherms and the
interface appear to be symmetric about the centerline
( y = 0) and thus have not been in¯uenced by convec-

tive transport in the melt. Note that the solid±liquid
interface, which is an isotherm, is discernibly curved
such that the solid is concave. The total de¯ection of

the interface is about 0.5 mm which compares to a
value of 00.46 mm found in [6]. This curvature is pri-

marily a result of the di�erence in thermophysical
properties for the solid and liquid phases. Translation
of the thermal boundary condition also contributes to

this e�ect. Maximum velocity magnitudes and their lo-
cations for this case are provided in Table 2. These
values show that velocities in the thermally driven con-

vective cell are much higher than those found in the
secondary cell at this time.

At a later time (6000 s), the front is at x 1
26 mm, as shown in Fig. 4(b). The secondary convec-
tive cell has increased in size and strength as solute Ð

the driving force for this cell Ð continues to build up
at the interface. Later in the growth process (9000 s,
Fig. 4(c)), the front has advanced to x 1 36 mm, and

the secondary convective cell is almost as strong as the
primary cell (refer to Table 2). However, since the

magnitude of the velocities in the domain in all cases is
small (<1 mm/s), we anticipate that there would be
only a minimal impact of convection on solute segre-

gation. The curvature of the interface is also seen to
remain unchanged at these later times.

Traces of solute concentration across the height of
the solidi®ed alloy in the domain are shown in Fig. 5.
Three di�erent x-locations (16.18, 26.30, 36.41 mm)

are considered; these locations correspond to the lo-
cation of the interface at y = 0 at times of 3000, 6000
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and 9000 s, respectively. To aid in visualizing the in¯u-

ence of convection, results for a simulation involving

di�usion only (no convection) are superimposed on

this plot (dotted lines). Note that these pure di�usion

results indicate that signi®cant radial segregation arises

due to interface curvature [4,5,19] such that the values

for solute concentration at the centerline are larger

than those at the edges. The level of curvature-induced

Table 2

Maximum velocity magnitudes (and locations) in the primary and secondary cells determined at each gravity levela

j U j� �u2 � v2�1=2 3000 s 6000 s 9000 s

1 mg
Primary cell (x, y ) 0.3448 (25.5,21.80) 0.3433 (36.0,21.80) 0.3426 (46.3,21.80)

Secondary cell (x, y ) 0.05860 (16.5, 0.120) 0.1794 (27.0, 0.120) 0.3125 (37.0, 0.120)

4 10 mg
Primary cell (x, y ) 3.444 (25.5,21.80) 3.429 (36.0,21.80) 3.411 (46.6,21.80)

Secondary cell (x, y ) 0.5745 (16.5, 0.120) 1.754 (27.0, 0.600) 2.878 (37.0, 0.360)

50 mg
Primary cell (x, y ) 17.22 (25.5,21.80) 17.21 (35.7,21.80) 17.04 (46.6,21.80)

Secondary cell (x, y ) 1.183 (16.5, ÿ0.120) 5.224 (27.0, 1.08) 7.774 (38.7, 2.28)

a Velocity values are in mm/s and (x, y ) are in mm.

Fig. 5. Traces of solute concentration across the solidi®ed material at various x-locations for g=1 mg. The dotted lines correspond

to di�usion-only (no convection) results.
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radial segregation for the pure di�usion case remains

almost constant for each x-location (refer to Table 3).

The inclusion of convection into the calculations

causes the following e�ects. The formation and growth

of the secondary cell causes additional, convection-

based segregation to occur such that concentration

values near the top of the domain (positive y) are

higher than those at the bottom. For the trace at x =

16.18 mm, the concentration values are close to the

values predicted from the pure di�usion analysis, and

the maximum is at the centerline ( y = 0). At higher

values of x (t > 3000 s) this maximum is shifted

slightly from the centerline to a more positive y value.

The traces at x = 26.30 and 36.41 mm indicate levels

of radial segregation slightly increasing over the values

found for the pure di�usion case, and a slight shift

away from the centerline in the location of maximum

concentration (Table 3). This small e�ect is due to

increasing levels of solutal convection with time (refer

to Fig. 4 and Table 2).

Fig. 6 is a plot of longitudinal solute traces in both

the melt and the solidi®ed crystal, at domain heights

of y=ÿ2.88, 0 and 2.88 mm at times of 3000, 6000

and 9000 s. There is signi®cant solute buildup, with

the solute boundary layer clearly growing with time

(refer to Table 4 for interface concentrations). The

solute pro®les are similar in nature to the expected

traces for a di�usion-only case; convection has had a

minimal in¯uence on the solute pro®les. Near the

interface, the values for solute in the liquid are slightly

higher for the y = 2.88 mm trace than that for

y=ÿ2.88 mm. Further from the interface, but still

within the solute boundary layer, this e�ect diminishes.
This is due to the interaction of the two convective
cells. Close to the interface, the secondary cell circu-

lates solute-rich material within the boundary layer,
acting to accumulate solute-rich material in this region.
Note that concentration values at the interface of the

magnitudes indicated in Table 4 would be su�cient to

Table 3

Concentration values and radial segregation levels in the solidi®ed crystal at various x locations

Quantity x=16.18 mm x=26.30 mm x=36.41 mm

0 mg (di�usion only case)

Cav/C0 0.2564 0.4276 0.5576

Cmax/C0 0.2834 ( y=0) 0.4737 ( y=0) 0.6179 ( y=0)

x (%) 29.7 30.0 30.0

1 mg
Cav/C0 0.2564 0.4279 0.5582

Cmax/C0 0.2833 ( y=0.059) 0.4745 ( y=0.18) 0.6208 ( y=0.41)

x (%) 30.0 32.8 35.1

10 mg
Cav/C0 0.2545 0.4228 0.5482

Cmax/C0 0.2812 ( y=0.059) 0.5063 ( y=1.6) 0.7509 ( y=2.2)

x (%) 29.5 55.9 83.9

50 mg
Cav/C0 0.2071 0.3410 0.4373

Cmax/C0 0.2337 ( y=ÿ0.088) 0.5171 ( y=2.5) 0.7922 ( y=2.6)

x (%) 42.5 95.7 134

Table 4

Liquid concentration values at the interface �C �=C0� at di�er-
ent domain heights

Domain height 3000 s 6000 s 9000 s

0 mg (di�usion only case)

y=ÿ2.88 mm 7.38 12.0 15.6

y=0 9.78 16.3 21.3

y=2.88 mm 7.38 12.0 15.6

1 mg
y=ÿ2.88 mm 7.37 11.7 14.8

y=0 9.78 16.3 21.3

y=2.88 mm 7.47 12.5 16.7

10 mg
y=ÿ2.88 mm 7.30 9.36 10.1

y=0 9.70 15.6 19.2

y=2.88 mm 7.47 15.8 24.6

50 mg
y=ÿ2.88 mm 6.74 6.58 7.14

y=0 7.85 10.9 12.9

y=2.88 mm 5.40 17.9 27.4
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lower the melting temperature of the alloy by a signi®-
cant amount [18]. This implies that the constant melt-

ing temperature assumption is not suitable. The likely
e�ect of the inclusion of a concentration-dependent
melting temperature would be to cause the interface to

be thicker near the bottom of the domain. This e�ect
may alter the concentration and velocity ®elds and will
be addressed in future work.

4.3. g=10 mg

Velocity vectors and isotherms for this case are simi-
lar in nature (but larger in magnitude) to those shown
for the g = 1 mg case (Fig. 4) and are not shown.

Values for maximum velocities in the primary and sec-
ondary cells are provided in Table 2. Traces of solute
concentration across the height of the solidi®ed alloy,

along with pure di�usion results, are shown in Fig. 7
and Table 3. The increased levels of convection have
caused the following e�ects. For the trace at x =

16.18 mm, the concentration values are close to the

values predicted from the pure di�usion analysis. This

serendipitous result is a consequence of segregation

arising from the in¯uence of the secondary cell balan-

cing the reverse segregation caused by the thermally

driven cell when solidi®cation has proceeded to this lo-

cation. At lower values of x (t < 3000 s), segregation

is such that the maximum value occurs at y < 0 while

at higher values of x (t > 3000 s) this maximum is

shifted noticeably to a more positive y value. The

traces at x=26.30 and 36.41 mm show that increasing

solutal convection leads to increasing radial segre-

gation. This behavior is di�erent from the case shown

in Fig. 5, where the lower levels in convection resulted

in only slight levels of convection-induced segregation.

Fig. 8 is a plot of longitudinal solute traces at

domain heights of y=ÿ2.88, 0 and 2.88 mm for the g

= 10 mg at times of 3000, 6000 and 9000 s. Numerical

values for interface concentrations are provided in

Table 4. As for the g = 1 mg case (shown in Fig. 6)

there is signi®cant solute buildup. Note, however, that

the solute boundary layers are discernibly di�erent at

Fig. 6. Longitudinal solute concentration traces at three di�erent y-locations for g=1 mg.
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the three y-locations. Near the interface, the values for

solute in the liquid are higher for the y = 2.88 mm

trace than for y=ÿ2.88 mm. Further from the inter-

face, but still within the solute boundary layer, concen-

tration increases with decreasing y. This is due to the

interaction of the two convective cells. Close to the

interface, the secondary cell circulates solute-rich ma-

terial within the boundary layer, acting to accumulate

solute-rich material in this region. Further from the

interface (see Fig. 4 for example), the primary convec-

tive cell in¯uences the solute distribution, sweeping

solute from the bottom of the domain into the bulk

and thickening the solute boundary layer in this

region. In general, the solute boundary layers are more

compact near the interface than for the g = 1 mg case

at each corresponding time.

For a gravity level of g= 10 mg, thermosolutal con-

vection plays a much larger role than for the g= 1 mg
case, as can be seen in the concentration pro®les dis-

cussed above. As growth proceeds, the level of solutal

convection grows, with a corresponding increase in

radial segregation. The maximum concentration
increases much more rapidly than the minimum value.

4.4. g=50 mg

Velocity vectors and isotherms after 3000, 6000 and
9000 s for this gravity level are shown in Fig. 9. Nu-

merical values for various velocities are given in Table
2. Note the much larger scale of velocity on this plot
compared to that used in Fig. 4; the velocities are

much larger due to the increased level of gravity. Also
note that vectors are again shown at every other mesh
point in the x-direction for clarity. After 3000 s (Fig.
9a), there is a weak, solute-driven secondary cell near

the interface which counter-acts a primary, thermally-
driven convective cell. Note the small x-direction span
of the secondary cell. After 6000 s, increasing solute

rejection has led to the formation of a much larger
(and stronger) secondary cell. This secondary cell is
signi®cantly di�erent in nature to those observed for

the lower gravity levels after the same amount of time

Fig. 7. Traces of solute concentration across the solidi®ed material at various x-locations for g = 10 mg. The dotted lines corre-

spond to di�usion-only (no convection) results.
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has elapsed (6000 s, refer to Fig. 4b). In contrast to
the lower gravity cases, the center of the cell has

moved away from the centerline ( y = 0) and instead
lies at y 1 1.2 mm. The secondary cell is larger and
also increases in thickness with increasing y; it is much

thicker in the y > 0 portion of the domain. These
e�ects are due to increased levels of convection-
induced radial and longitudinal segregation and will be

expanded upon later in this section. After 9000 s (Fig.
9c), the secondary cell has increased in size and magni-
tude. The center of the cell remains at y 1 1.2 mm. At

this time the magnitudes of the velocities near the
interface have become quite large (refer to Table 2).
Fig. 10 is a plot of solute concentration across the

height of the solidi®ed alloy, along with pure-di�usion

results. Once again, numerical values are provided in
Table 3. As anticipated from the ¯ow structure indi-
cated in Fig. 9, the high levels of convection have

resulted in greatly increased levels of radial segre-
gation. Large velocities in the positive y direction near
the interface act to sweep solute such that the sample

is solute-rich as y increases. For all three traces shown,
the segregation pattern for g = 50 mg is signi®cantly

di�erent from the di�usion-only result. This di�ers
from the cases where convection levels are lower (Figs.
5 and 7) where the traces retained some of the charac-

teristics of the di�usion-only result. For the x =
16.18 mm case, the maximum value in concentration
occurs at y < 0; at this time the secondary convective

cell driven by solutal gradients (refer to Fig. 9a) has
not become strong enough to counter-act the segre-
gation caused by the thermal cell up to this point. For

the other traces (x = 26.30, 36.41 mm), the increasing
strength of the secondary cell causes increasing levels
of segregation and a shift in the location of the maxi-
mum value to the y > 0 region. Also note that the

average value of concentration across the domain is
signi®cantly lower for this case than for the di�usion-
only result. This is a further indication of a move

away from di�usion-dominated conditions and will be
expanded upon later.
Fig. 11 is a plot of longitudinal solute traces in the

Fig. 8. Longitudinal solute concentration traces at three di�erent y-locations for g=10 mg.
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Fig. 9. Velocity vectors and isotherms for horizontal Bridgman growth with g = 50 mg at (a) 3000 (b) 6000 and (c) 9000 s. The

thick solid line indicates the location of the interface. Note the intensity of the velocities in the secondary cell when compared to

those in Fig. 4.
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liquid and solid for the g= 50 mg case. The results are

dramatically di�erent from those shown in Figs. 6 and

8. The boundary layers no longer exhibit the character-

istic exponential pro®le of di�usion-dominated con-

ditions: a break-down in di�usion-dominated growth

has occurred. There are several interesting phenomena

that may be observed. At 3000 s the traces are the

result of the action of the thermally driven primary

convective cell which dominates the convection in the

melt up to this time. Convective velocities move

towards the interface in the y > 0 region and then

down and away from the interface in the y>0 region.

Correspondingly, the y = 2.88 mm trace exhibits a

compact solute boundary layer and has a lower peak

value than the y=ÿ2.88 mm trace, which has a higher

peak value and is much more di�use (the layer extends

to x 1 38 mm!). At later times, the boundary layers

are more complicated. The increased strength and size

of the secondary convective cell causes much larger

peak values for the y = 2.88 mm trace than for the

y=ÿ2.88 mm trace. Furthermore, solute transported

into the secondary cell is entrained into the primary

cell and swept out into the bulk, resulting in thicker

solute boundary layers in the y < 0 portion of the

domain. Note that the boundary layer for the trace at

y=ÿ2.88 mm extends to x1 60 mm.

Fig. 12 is a plot of average solute concentrations in

the solid at 3000, 6000 and 9000 s for the 1, 10 and

50 mg cases. Averaging is performed across the height

of the solidi®ed material ( y=ÿ3 to 3 mm). For com-

parison purposes, average concentrations for the pure

di�usion case as well as those calculated from an exact

analytical expression for solid solute concentrations

under 1D, pure di�usion growth conditions [20] are

also shown. The pure di�usion results exhibit good

agreement with the 1D analytical result; the largest

di�erence between these results is 1.7% at 9000 s. The

results for the 1 mg case are not signi®cantly di�erent

from the di�usion-only case results. This indicates that

at this gravity level, the process remains di�usion-con-

trolled. The average solute concentrations for the g =

10 mg case are discernibly lower than for the 1 mg case,

Fig. 10. Traces of solute concentration across the solidi®ed material at various x-locations for g = 50 mg. The dotted lines corre-

spond to di�usion-only (no convection) results.
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registering 0.8, 1.1 and 1.7% lower values than for the
pure di�usion case after 3000, 6000 and 9000 s, re-
spectively. This indicates that some solute is being

swept away from the near-interface region by the
slightly higher levels of convection; the results have
deviated from di�usion-controlled conditions. For the

g = 50 mg case, the average values are signi®cantly
lower than those found in the other cases. The larger
values of convection, in general, act to sweep solute
away from the interface and into the bulk (refer to

Figs. 9±11) and thus lower the average value of solute
concentration forming in the solid.

5. Conclusions

A series of fully transient simulations of horizontal
Bridgman crystal growth at various gravity levels have

been performed. The binary alloy being considered is
Bi-1.0 at.% Sn. The results from these simulations
have elucidated the in¯uence of thermosolutal convec-

Fig. 11. Longitudinal solute concentration traces at three di�erent y-locations for g=50 mg.

Fig. 12. Comparison of average concentration values in the

solidi®ed material. The solid line is the 1D analytical result

[20]. The result for g = 50 mg is signi®cantly di�erent from

the pure-di�usion result, indicating a breakdown to convec-

tive-controlled conditions.
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tion on longitudinal and radial solute pro®les during
the process.

As time proceeds and the crystal solidi®es, solute is
rejected at the interface and the level of solute near the
interface increases, leading to the formation of a solute

boundary layer. Initially, a single, thermally driven,
counter-clockwise rotating cell is present. As solute ac-
cumulates at the interface, a secondary, solute-driven

clockwise rotating cell develops. For a gravity level of
g = 1 mg, the magnitudes of the velocities in the
domain are small; the solute boundary layers are not

signi®cantly altered from the pure di�usion case.
Radial segregation due to convection is also slight. For
g= 10 mg, the magnitudes of the velocities in the melt
are larger. The e�ect of these increased convective

levels is to perturb the solute boundary layers from
their ideal di�usion-only pro®les and yield signi®cant
levels of segregation in the solute at the interface (and

hence in the solid). This segregation is such that the
values toward the top of the domain are highest. For
the highest gravity level of g= 50 mg, the solute redis-

tribution process has completely departed from being
di�usion-controlled; convection plays a very signi®cant
role in the process. The solute boundary layers are dra-

matically di�erent from the di�usion-controlled pro-
®les as a result of the complex convection pattern in
the melt. Very large levels of radial segregation are
observed in the solidi®ed material, due to the transport

of solute to the y> 0 portion of the domain under the
action of convection.
The values of concentration encountered at the

interface (especially at later times) would result in a
signi®cant change in the melting temperature of the
alloy. Further simulations of Bridgman crystal growth,

incorporating the e�ects of a concentration-dependent
melting temperature, are planned as future work.
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Appendix A. Discrete form of energy equation

The energy equation, Eq. (1), is discretized using the
®nite volume mesh (Fig. 2). An upwind scheme is in-

corporated for the treatment of convective heat ¯uxes.
This discretization may then be written as

An�1
i, j

T n�1
i, j ÿ T n

i, j

Dt
DxDy

� rcpLDy�T n�1
i, j (uiÿ1=2, j, 0)ÿ T n�1

iÿ1, j(ÿ uiÿ1=2, j, 0)

� T n�1
i, j (ÿ ui�1=2, j, 0)ÿ T n�1

i�1, j(ui�1=2, j, 0)�

� rcpLDx�T n�1
i, j (vi, jÿ1=2, 0)ÿ T n�1

i, jÿ1(ÿ vi, jÿ1=2, 0)

� T nÿ1
i, j (ÿ vi, j�1=2, 0)ÿ T n�1

i, j�1(vi, j�1=2, 0)�

� Dy�ki�1=2, j�T n�1
i�1, j ÿ T n�1

i, j �=Dxÿ kiÿ1=2, j�T n�1
i, j

ÿ T n�1
iÿ1, j �=Dx� � Dx�ki, j�1=2�T n�1

i, j�1 ÿ T n�1
i, j �=Dy

ÿ ki, jÿ1=2�T n�1
i, j ÿ T n�1

i, jÿ1�=Dy�

in which (X, Y) is the maximum of X and Y. The dis-
crete form of the apparent heat capacity A (Eq. (3)) is

An�1
i, j � r�cpLf

n�1
L � cpSf

n�1
S � � r��cpL ÿ cpS�T n�1

� h0�
�
@ fL
@T

�n�1
:

Appendix B. Discrete form of concentration equation

The discretized analog of Eq. (4) using the ®nite
volume mesh and upwinding for the convective terms
is

C n�1
Li, j ÿ C n

Li, j

Dt
DxDy

� Dy�C n�1
Li, j(uiÿ1=2, j, 0)ÿ C n�1

Liÿ1, j(ÿ u1ÿ1=2, j, 0)

� C n�1
Li, j(ÿ ui�1=2, j, 0)ÿ C n�1

Li�1, j(ui�1=2, j, 0)�

� Dx�C n�1
Li, j(ui, jÿ1=2, 0)ÿ C n�1

Li, jÿ1(ÿ ui, jÿ1=2, 0)

� C n�1
Li, j(ÿ ui, j�1=2, 0)ÿ C n�1

Li, j�1(ui, j�1=2, 0)�

� Dy

"
Di�1=2, j

C n�1
Li�1, j ÿ C n�1

Li, j

Dx

ÿDiÿ1=2, j
C n�1

Li, j ÿ C n�1
Liÿ1, j

Dx

#

� Dx

"
Di, j�1=2

C n�1
Li, j�1 ÿ C n�1

Li, j

Dy

ÿDi, jÿ1=2
C n�1

Li, j ÿ C n�1
Li, jÿ1

Dy

#
� Si, j
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in which (X, Y) is the maximum of X and Y. The dis-
crete form of source term S (Eq. (6)) becomes

Si, j � C n�1
Li, j

�1ÿ kp�� f nL ÿ f n�1L �
Dt

DxDy

� �1ÿ f n�1L ��Cn�1
Li, j ÿ C n

Li, j �
Dt

DxDy:
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